Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Med Chem ; 67(5): 4007-4025, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38381075

RESUMO

Invasive fungal infections pose a serious threat to public health and are associated with high mortality and incidence rates. The development of novel antifungal agents is urgently needed. Based on hit-to-lead optimization, a series of 2,4,6-trisubstituted triazine hydrazone compounds were designed, synthesized, and biological evaluation was performed, leading to the identification of compound 28 with excellent in vitro synergy (FICI range: 0.094-0.38) and improved monotherapy potency against fluconazole-resistant Candida albicans and Candida auris (MIC range: 1.0-16.0 µg/mL). Moreover, 28 exhibited broad-spectrum antifungal activity against multiple pathogenic strains. Furthermore, 28 could inhibit hyphal and biofilm formation, which may be related to its ability to disrupt the fungal cell wall. Additionally, 28 significantly reduced the CFU in a mouse model of disseminated infection with candidiasis at a dose of 10 mg/kg. Overall, the triazine-based hydrazone compound 28 with low cytotoxicity, hemolysis, and favorable ADME/T characteristics represents a promising lead to further investigation.


Assuntos
Antifúngicos , Candidíase , Animais , Camundongos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Testes de Sensibilidade Microbiana , Fluconazol/farmacologia , Candida albicans , Candidíase/tratamento farmacológico , Candidíase/microbiologia
2.
J Enzyme Inhib Med Chem ; 38(1): 2244696, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37553905

RESUMO

A series of novel triazole derivatives containing aryl-propanamide side chains was designed and synthesised. In vitro antifungal activity studies demonstrated that most of the compounds inhibited the growth of six human pathogenic fungi. In particular, parts of phenyl-propionamide-containing compounds had excellent, broad-spectrum antifungal activity against Candida albicans SC5314, Cryptococcus neoformans 22-21, Candida glabrata 537 and Candida parapsilosis 22-20 with MIC values in the range of ≤0.125 µg/mL-4.0 µg/mL. In addition, compounds A1, A2, A6, A12 and A15 showed inhibitory activities against fluconazole-resistant Candida albicans and Candida auris. Preliminary structure-activity relationships (SARs) are also summarised. Moreover, GC-MS analysis demonstrated that A1, A3, and A9 interfered with the C. albicans ergosterol biosynthesis pathway by inhibiting Cyp51. Molecular docking studies elucidated the binding modes of A3 and A9 with Cyp51. These compounds with low haemolytic activity and favourable ADME/T properties are promising for the development of novel antifungal agents.


Assuntos
Antifúngicos , Triazóis , Humanos , Antifúngicos/química , Triazóis/química , Simulação de Acoplamento Molecular , Fluconazol/farmacologia , Candida albicans , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
3.
Eur J Med Chem ; 257: 115506, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37216811

RESUMO

Previous work led to the rational design, synthesis and testing of novel antifungal triazole analogues bearing alkynyl-methoxyl side chains. Tests of in vitro antifungal activity showed Candida albicans SC5314 and Candida glabrata 537 gave MIC values of ≤0.125 µg/mL for most of the compounds. Among these, compounds 16, 18, and 29 displayed broad-spectrum antifungal activity against seven human pathogenic fungal species, two fluconazole-resistant C. albicans isolates and two multi-drug resistant Candida auris isolates. Moreover, 0.5 µg/mL of 16, 18, and 29 was more effective than 2 µg/mL of fluconazole at inhibiting fungal growth of the strains tested. The most active compound (16) completely inhibited the growth of C. albicans SC5314 at 16 µg/mL for 24 h, affected biofilm formation and destroyed the mature biofilm at 64 µg/mL. Several Saccharomyces cerevisiae strains, overexpressing recombinant Cyp51s or drug efflux pumps, indicated 16, 18, and 29 targeted Cyp51 without being significantly affected by a common active site mutation, but were susceptible to target overexpression and efflux by both MFS and ABC transporters. GC-MS analysis demonstrated that 16, 18, and 29 interfered with the C. albicans ergosterol biosynthesis pathway by inhibition at Cyp51. Molecular docking studies elucidated the binding modes of 18 with Cyp51. The compounds showed low cytotoxicity, low hemolytic activity and favorable ADMT properties. Importantly, compound 16 showed potent in vivo antifungal efficacy in the G. mellonella infection model. Taken together, this study presents more effective, broad-spectrum, low toxicity triazole analogues that can contribute to the development of novel antifungal agents and help overcome antifungal resistance.


Assuntos
Antifúngicos , Triazóis , Humanos , Antifúngicos/farmacologia , Triazóis/farmacologia , Fluconazol/farmacologia , Simulação de Acoplamento Molecular , Testes de Sensibilidade Microbiana , Candida albicans , Farmacorresistência Fúngica , Saccharomyces cerevisiae
4.
Pharmaceutics ; 14(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36365153

RESUMO

The clinical prevalence of antifungal drug resistance has been increasing over recent years, resulting in the failure of treatments. In an attempt to overcome this critical problem, we sought novel synergistic enhancers to restore the effectiveness of fluconazole against resistant Candida albicans. Based on the structural optimization of hit compound 8 from our in-house library, a series of novel 1,3,5-triazines derivatives was designed, synthesized, and biologically evaluated for synergistic activity in combination with fluconazole. Among them, compounds 10a-o, which contain thiosemicarbazides side chains, exhibited excellent in vitro synergistic antifungal potency (MIC80 = 0.125-2.0 µg/mL, FICI range from 0.127 to 0.25). Interestingly, compound 10l exhibited moderate C. albicans activity as monotherapy with an MIC80 value of 4.0 µg/mL, and also on several Cryptococcus strains (MIC80 ranging from ≤ 0.125-0.5 µg/mL) and C. glabrata (MIC80 ≤ 0.125 µg/mL). These effects were fungal-selective, with much lower levels of cytotoxicity towards human umbilical vein endothelial cells. Here, we report a series of thiosemicarbazides containing 1,3,5-triazines derivatives as potent synergists with fluconazole, and have preliminarily validated compound 10l as a promising antifungal lead for further investigation.

5.
Bioorg Chem ; 129: 106216, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36283177

RESUMO

In order to develop new triazole derivatives, we optimized the lead compound a6 by structural modifications to obtain a series of (2R,3R)-3-((1-substituted-1H-1,2,3-triazol-4-yl) methoxy)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol, compounds 5-36. Most of the target compounds exhibited excellent in vitro antifungal activity against Candida albicans 10231 and Candida glabrata 537 with MIC ≤ 0.125 µg/mL. Of particular note, compounds 6, 22, 28, 30 and 36 were highly active against Candida neoformans 32609 with MIC ≤ 0.125 µg/mL and showed broad-spectrum antifungal activity including against fluconazole-resistant Candida auris 891. In addition, compounds 6 and 22 demonstrated inhibitory effects on filamentation in the azole-resistant C. albicans isolate. Moreover, compounds 6 and 22 were minimally toxic to HUVECs and possessed weak inhibitory effects on the human CYP3A4 and CYP2D6. SARs and docking study further indicated that ortho-substituted groups in the terminal phenyl ring can promote the compounds to improve their antifungal activity.


Assuntos
Antifúngicos , Triazóis , Humanos , Antifúngicos/química , Triazóis/química , Testes de Sensibilidade Microbiana , Fluconazol/farmacologia , Candida albicans , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 76: 128986, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36113670

RESUMO

Herein, the di- and trisaccharide mimics of the hexasaccharide antigen related to Bacillus anthracis were synthesized and covalently coupled with carrier proteins, such as keyhole limpet hemocyanin (KLH) and bovine serum albumin (BSA), to form the corresponding glycoconjugates 1-6. 2,3,4,6-Tetra-O-benzyl thioglycoside and 2-deoxyl-2-phthalylamino-3,4,6-tri-O-benzyl thioglycoside were applied as glycosyl donors to guarantee α or ß-configuration of the newly formed glycosidic bonds. Glutaraldehyde was used as a homobifunctional cross-linker for high-efficiency coupling. The synthetic KLH-glycoconjugates 2, 4 and 6 were also used to vaccinate female Balb/c mice and the preliminary results of ELISA uncovered that all three KLH-conjugates could induce immune responses and generate oligosaccharide-specific total IgG antibodies. The trisaccharide 8, the glycosyl part of glycoconjugate 4, is of great immunogenicity.


Assuntos
Bacillus anthracis , Tioglicosídeos , Camundongos , Animais , Feminino , Trissacarídeos , Soroalbumina Bovina , Glutaral , Antígenos , Camundongos Endogâmicos BALB C , Imunoglobulina G , Glicoconjugados , Oligossacarídeos , Proteínas de Transporte
7.
Molecules ; 27(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35684308

RESUMO

A series of triazole derivatives containing phenylethynyl pyrazole moiety as side chain were designed, synthesized, and most of them exhibited good in vitro antifungal activities. Especially, compounds 5k and 6c showed excellent in vitro activities against C. albicans (MIC = 0.125, 0.0625 µg/mL), C. neoformans (MIC = 0.125, 0.0625 µg/mL), and A. fumigatus (MIC = 8.0, 4.0 µg/mL). Compound 6c also exerted superior activity to compound 5k and fluconazole in inhibiting hyphae growth of C. albicans and inhibiting drug-resistant strains of C. albicans, and it could reduce fungal burdens in mice kidney at a dosage of 1.0 mg/kg. An in vivo efficacy evaluation indicated that 6c could effectively protect mice models from C. albicans infection at doses of 0.5, 1.0, and 2.0 mg/kg. These results suggested that compound 6c deserves further investigation.


Assuntos
Antifúngicos , Cryptococcus neoformans , Animais , Antifúngicos/química , Candida albicans , Fluconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Pirazóis/farmacologia , Relação Estrutura-Atividade , Triazóis/química
8.
J Appl Physiol (1985) ; 131(2): 435-441, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34166120

RESUMO

Inert gas bubbles are widely accepted as the causative factor of decompression sickness (DCS), resulting in gas embolism and systemic inflammatory responses. The anticonvulsive ketone ester 1,3-butanediol acetoacetate diester (BD-AcAc2) was reported to have the characteristics of increasing blood oxygen partial pressure (ppO2) and anti-inflammation and was thought to have the potential to reduce bubble formation and alleviate the pathological process of DCS. This study aims to investigate the potential protection of BD-AcAc2 against DCS in a rat model. A single dose of BD-AcAc2 was administered orally to adult male rats (5 g/kg body wt), followed by pharmacokinetic analysis or simulated air dives. After decompression, signs of DCS were monitored, and blood was sampled for biochemical measurements. Blood ketosis peaked at 2 h and lasted for more than 4 h. The incidence of DCS was decreased and postponed significantly in rats treated with BD-AcAc2 compared with those treated with saline (P < 0.05). Although BD-AcAc2 failed to reduce bubble load (P > 0.05), it showed an obvious decreasing trend. BD-AcAc2 significantly increased blood ppO2 and ameliorated oxidative and inflammatory responses, represented by increased plasma malondialdehyde (MDA), IL-1, IL-6, and TNF-α and decreased glutathione thiol (P < 0.05) levels, whereas blood pH remained unchanged (P > 0.05). These results suggest that BD-AcAc2 exerted beneficial effects on DCS rats mainly related to increasing ppO2 and anti-inflammatory and antioxidant properties. Together with its capacity for delaying central nervous system (CNS) oxygen toxicity seizures, BD-AcAc2 might be an ideal drug candidate for DCS prevention and treatment.NEW & NOTEWORTHY This is the first study exploring the effects of BD-AcAc2 on DCS prevention, and it was proven to be an efficient and simple method. The role of BD-AcAc2 in increasing ppO2, anti-inflammatory and antioxidant properties was thought to be the critical mechanism in DCS prevention.


Assuntos
Doença da Descompressão , Mergulho , Acetoacetatos , Animais , Butileno Glicóis , Descompressão , Doença da Descompressão/tratamento farmacológico , Masculino , Ratos , Convulsões
9.
Med Chem ; 17(9): 974-982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32819233

RESUMO

BACKGROUND: Schisandronic acid (SA), a triterpenoid from fruits of Schisandra sphenanthera, inhibited pan-genotypic HCV entry into human hepatocytes by interfering with virion-cell membrane fusion. It was a promising lead compound for the development of novel HCV entry inhibition agents. OBJECTIVE: The aim of the present study is to search for compounds with more potent anti-HCV and antitumor activities and explore SARs. A series of novel derivatives of SA were designed and synthesized and evaluated for in vitro, their anti-HCV and antitumor activities. METHODS: SA derivatives were synthesized by reduction, condensation, esterification or amidation. The anti-HCV activity of title compounds was tested by inhibition on HCVcc infection of Huh7 cells, and a preliminary MOA study was conducted by determining inhibition on HCVpp entry into Huh7 cells. The antitumor activity in vitro was determined by MTT methods. RESULTS: In total, 24 novel derivatives were synthesized. Most of the compounds inhibited HCVcc infection. Compounds 5h and 6 showed the most potent anti-HCVcc activities and inhibition of HCVpp entry into Huh7 cells without obvious cytotoxicity. Most of the title compounds showed potent in vitro antitumor activities against Bel7404 and SMMC7721 tumor cell lines. Compounds 5j and 6 exhibited more potent antitumor activity than positive control SA and DOX. CONCLUSION: Structural modification of SA could lead to the discovery of potent anti-HCV or antitumor agents. Compounds 5h, 5j and 6 were promising lead compounds for development of novel HCV entry inhibition or antitumor agents.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Triterpenos/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Antivirais/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Hepacivirus/patogenicidade , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Relação Estrutura-Atividade , Internalização do Vírus/efeitos dos fármacos
10.
Bioorg Chem ; 101: 103982, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32534348

RESUMO

In order to develop novel antifungal agents, based on our previous work, a series of (2R,3R)-3-((3-substitutied-isoxazol-5-yl)methoxy)-2-(2,4-difluorophenyl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol (a1-a26) were designed and synthesized. All of the compounds exhibited good in vitro antifungal activities against eight human pathogenic fungi. Among them, compound a6 showed excellent inhibitory activity against Candida albicans and Candida parasilosis with MIC80 values of 0.0313 µg/mL. In addition, compounds a6, a9, a12, a13 and a14 exhibited moderate inhibitory activities against fluconazole-resistant isolates with MIC80 values ranging from 8 µg/mL to 16 µg/mL. Furthermore, compounds a6, a12 and a23 exhibited low inhibition profiles for CYP3A4. Clear SARs were analyzed, and the molecular docking experiment was carried out to further investigate the relationship between a6 and the target enzyme CYP51.


Assuntos
Antifúngicos/uso terapêutico , Candida albicans/efeitos dos fármacos , Isoxazóis/química , Simulação de Acoplamento Molecular/métodos , Triazóis/síntese química , Triazóis/uso terapêutico , Antifúngicos/farmacologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química
11.
Anticancer Agents Med Chem ; 20(10): 1241-1249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116205

RESUMO

BACKGROUND: Rabdosia japonica has been historically used in China as a popular folk medicine for the treatment of cancer, hepatitis, and gastricism. Glaucocalyxin A (GLA), an ent-kaurene diterpene isolated from Rabdosia japonica, is one of the main active ingredients showing potent inhibitory effects against several types of tumor cells. To the best of our knowledge, studies regarding the structural modification and Structure- Activity Relations (SAR) of this compound have not yet been reported. OBJECTIVE: The aim of this study was to discover more potent derivatives of GLA and investigate their SAR and cytotoxicity mechanisms. METHODS: Novel 7-O- and 14-O-derivatives of GLA were synthesized by condensation of acids or acyl chloride. The anti-tumor activities of these derivatives against various human cancer cell lines were evaluated in vitro by MTT assays. Apoptosis assays of compound 17 (7,14-diacylation product) were performed on A549 and HL-60 cells by flow cytometry and TUNNEL. The acute toxicity of this compound was tested on mice, at the dose of 300mg per kg body weight. RESULTS: Seventeen novel 7-O- and 14-O-derivatives of GLA (1-17) were synthesized. These compounds showed potent cytotoxicity against the tested cancer cell lines, and almost all of them were found to be more cytotoxic than GLA and oridonin. Of the synthesized derivatives, compound 17 presented the greatest cytotoxicity, with IC50 values of 0.26µM and 1.10µM in HL-60 and CCRF-CEM cells, respectively. Furthermore, this compound induced weak apoptosis of A549 cells but showed great potential in stimulating the apoptosis of HL- 60 cells. Acute toxicity assays indicated that compound 17 is relatively safer. CONCLUSION: The results reported herein indicate that the synthesized GLA derivatives exhibited greater cytotoxicity against leukemia cells than against other types of tumors. In particular, 7,14-diacylation product of GLA was found to be an effective anti-tumor agent. However, the cytotoxicity mechanism of this product in A549 cells is expected to be different than that in other tumor cell lines. Further research is needed to confirm this hypothesis.


Assuntos
Antineoplásicos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
12.
Bioorg Med Chem Lett ; 30(4): 126951, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926784

RESUMO

The incidence of invasive fungal infections has dramatically increased for several decades. In order to discover novel antifungal agents with broad spectrum and anti-Aspergillus efficacy, a series of novel triazole derivatives containing 1,2,3-benzotriazin-4-one was designed and synthesized. Most of the compounds exhibited stronger in vitro antifungal activities against tested fungi than fluconazole. Moreover, 6m showed comparable antifungal activity against seven pathogenic strains as voriconazole and albaconazole, especially against Aspergillus fumigatus (MIC = 0.25 µg/ml), and displayed moderate antifungal activity against fluconazole-resistant strains of Candida albicans. A clear SAR study indicated that compounds with groups at the 7-position resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Desenho de Fármacos , Triazóis/síntese química , Antifúngicos/síntese química , Antifúngicos/química , Sítios de Ligação , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Domínio Catalítico , Farmacorresistência Fúngica , Fluconazol/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
13.
Drug Des Devel Ther ; 13: 4239-4246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853172

RESUMO

PURPOSE: Xanthones demonstrated an array of pharmacological activities via non-covalent DNA interaction and have been widely utilized in new drug research. The introduction of the polar 1,2,3-triazole ring located at the C3-position of xanthone has not been reported thus far. METHODS: In the present study, a series of xanthone derivatives were designed, synthesized, and characterized through 1H NMR, 13C NMR, and MS. The methyl thiazolyl tetrazolium method was used to evaluate the cytotoxic activity of compounds. Furthermore, the structure-activity relationship and the potential mechanism of target compounds were investigated. RESULTS: The IC50 showed that the inhibitory activity of 18 target compounds was higher than that of the original xanthone intermediate 4. In particular, compound 1j was the most active agent against A549 cancer cells (IC50 = 32.4 ± 2.2 µM). Moreover, apoptosis analysis indicated different contributions of early/late apoptosis to cell death for compounds 1h and 1j. The results of Western blotting analysis showed that compound 1j significantly increased the expression of caspase 3, Bax, and c-Jun N-terminal kinase, and regulated p53 to a better healthy state in cancer cells. CONCLUSION: We synthesized several derivatives of xanthone and evaluated their cytotoxicity. The evidence suggested that compound 1j possessed greater anticancer potential for further evaluations.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Xantonas/síntese química , Xantonas/farmacologia , Células A549 , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/química
14.
Diving Hyperb Med ; 48(4): 235-240, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30517956

RESUMO

BACKGROUND: Recent studies indicated that ketone ester R,S-1,3-butanediol acetoacetate diester (BD-AcAc2) may be effective in preventing central nervous system oxygen toxicity (CNS-OT) and concomitant acute lung injury, a serious medical problem to be faced when breathing hyperbaric oxygen (HBO). This study aimed to further investigate the protective effects of BD-AcAc2 against CNS-OT and concomitant acute lung injury (ALI) in mice. METHODS: Mice were treated with BD-AcAc2 in peanut oil vehicle (2.5, 5.0 or 10.0 g·kg⁻² body weight) by gavage 20 minutes before 600 kPa HBO exposure. Control mice received the vehicle only. Seizure latency was recorded. Malondialdehyde content in brain and lung tissues, total protein level in bronchoalveolar lavage fluid (BLF) and lung water content were measured 60 minutes after the hyperbaric exposure. Histopathology of lung tissue was undertaken. RESULTS: Compared with the vehicle alone, BD-AcAc2 prolonged seizure latency in a dose-dependent manner (P < 0.01). The HBO-induced increase in brain malondialdehyde, BLF protein and lung water were significantly reduced by BD-AcAc2 (P < 0.01). CONCLUSION: Oral administration of the ketone ester BD-AcAc2 significantly protected against CNS-OT and concomitant ALI. Alleviation of oxidative stress may be one underlying mechanism providing this effect.


Assuntos
Acetoacetatos/uso terapêutico , Lesão Pulmonar Aguda , Encéfalo/efeitos dos fármacos , Butileno Glicóis/uso terapêutico , Oxigenoterapia Hiperbárica , Acetoacetatos/farmacologia , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Oxigenoterapia Hiperbárica/efeitos adversos , Camundongos , Oxigênio , Ratos Sprague-Dawley , Convulsões/tratamento farmacológico
15.
Eur J Med Chem ; 143: 1840-1846, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29133044

RESUMO

The incidence of life-threatening fungal infections has dramatically increased for decades. In order to develop novel antifungal agents, two series of (2R,3R)-1-(1H-1,2,4-triazol-1-yl)-2-(2,4-difluorophenyl)-3-(N-substitutied)-2-butanols (3a-o, 5a-f, 8a-u), which were analogues of voriconazole, were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS. The MIC80 values showed that the target compounds 3a-o indicated better activities than fluconazole on three important fungal pathogens except for 3i. Significant activity of compounds 3d, 3k, 3n, 3m and 3o was observed on the Aspergillus fumigatus strain (MIC80 range: 1-0.125 µg/ml). Especially, compound 3k had strong activity to inhibit the growth of ten fungal pathogens. But it didn't exhibit good activity in in vivo value. Molecular docking experiments demonstrated that 3k possessed superior affinity with target enzyme by strong hydrogen bond from morpholine ring.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Desenho de Fármacos , Simulação de Acoplamento Molecular , Triazóis/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química
16.
Bioorg Med Chem Lett ; 27(19): 4571-4575, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28874321

RESUMO

Based on our previous discovery and SAR study on the lead compounds 7d, 5 and berberine which can significantly enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans, a series of 3-(benzo[d][1,3]dioxol-5-yl)-N-(substituted benzyl)propanamides were designed, synthesized, and evaluated for their in vitro synergistic activity in combination with fluconazole. The series 2a-f were designed by replacing the amide moiety of the lead compound 7d with retro-amide moiety, and compounds 2a and 2b showed more activity than the lead 7d. Furthermore, introducing biphenyl moiety into series 2d-f afforded series 3a-r, most of which exhibited significantly superior activity to the series 2d-f. Especially, compound 3e, at a concentration of 1.0µg/ml, can enhance the susceptibility of fluconazole against fluconazole-resistant Candida albicans from 128.0µg/ml to 0.125-0.25µg/ml. A clear SAR of the compounds is discussed.


Assuntos
Antifúngicos/farmacologia , Benzodioxóis/farmacologia , Candida albicans/efeitos dos fármacos , Desenho de Fármacos , Fluconazol/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Benzodioxóis/síntese química , Benzodioxóis/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 27(10): 2171-2173, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28372907

RESUMO

Twenty-nine novel triazole analogues of ravuconazole and isavuconazole were designed and synthesized. Most of the compounds exhibited potent in vitro antifungal activities against 8 fungal isolates. Especially, compounds a10, a13, and a14 exhibited superior or comparable antifungal activity to ravuconazole against all the tested fungi. Structure-activity relationship study indicated that replacing 4-cyanophenylthioazole moiety of ravuconazole with fluorophenylisoxazole resulted in novel antifungal triazoles with more effectiveness and a broader-spectrum.


Assuntos
Antifúngicos/síntese química , Desenho de Fármacos , Triazóis/química , Antifúngicos/química , Antifúngicos/farmacologia , Cristalografia por Raios X , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Nitrilas/química , Piridinas/química , Relação Estrutura-Atividade , Tiazóis/química , Triazóis/síntese química , Triazóis/farmacologia
18.
Chemistry ; 22(16): 5649-56, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26933828

RESUMO

The requirement for nitric oxide (NO) of lysosomes has motivated the development of a sophisticated fluorescent probe to monitor the distribution of this important biomolecule at the subcellular level in living cells. A near-infrared (NIR) fluorescent Si-rhodamine (SiRB)-NO probe was designed based on the NO-induced ring-opening process of Si-rhodamine. The probe exhibits fast chromogenic and fluorogenic responses, and high sensitivity and selectivity toward trace amounts of NO. Significantly, the spirolactam in Si-rhodamine exhibits very good tolerance to H(+), which in turn brings extremely low background fluorescence not only in the physiological environment but also under acidic conditions. The stability of the highly fluorescent product in acidic solution provides persistent fluorescence emission for long-term imaging experiments. To achieve targeted imaging with improved spatial resolution and sensitivity, an efficient lysosome-targeting moiety was conjugated to a SiRB-NO probe, affording a tailored lysosome-targeting NIR fluorescent Lyso-SiRB-NO probe. Inheriting the key advantages of its parent SiRB-NO probe, Lyso-SiRB-NO is a functional probe that is suited for monitoring lysosomal NO with excellent lysosome compatibility. Imaging experiments demonstrated the monitoring of both exogenous and endogenous NO in real time by using the Lyso-SiRB-NO probe.


Assuntos
Corantes Fluorescentes/química , Lisossomos/química , Óxido Nítrico/química , Compostos de Silício/química , Técnicas Biossensoriais , Fluorescência , Concentração de Íons de Hidrogênio , Espectroscopia de Luz Próxima ao Infravermelho
20.
Oncotarget ; 6(7): 5195-203, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25760071

RESUMO

Immune tolerance to tumor-associated carbohydrate antigens (TACAs) has severely restricted the usefulness of most TACAs. To overcome this problem, we selected a sialylated trisaccharide TACA, GM3, as a target antigen, and tested a new immunotherapeutic strategy by combining metabolic bioengineering with dendritic cell (DC) vaccination. We engineered cancer cells to express an artificial structure, N-phenylacetyl-D-neuraminic acid, in place of the natural N-acetyl-D-neuraminic acid of GM3 by using N-phenylacetyl-D-mannosamine (ManNPhAc) as a biosynthetic precursor. Next, we selectively targeted the bioengineered cancer cells by vaccination with DCs pulsed with the GM3 N-phenylacetyl derivative. Vaccination with GM3NPhAc-KLH-loaded DCs elicited robust GM3NPhAc-specific T cell-dependent immunity. The results showed that this strategy could significantly inhibit FBL3 tumor growth and prolong the survival of tumor-bearing mice; B16F10 lung metastases could also be reduced. These findings lay out a new strategy for overcoming immune tolerance to TACAs, such as GM3, for the development of effective tumor immunotherapies.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Hexosaminas/imunologia , Imunoterapia , Melanoma Experimental/terapia , Linfócitos T/imunologia , Animais , Vacinas Anticâncer/imunologia , Engenharia Celular , Feminino , Citometria de Fluxo , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA